A new graph parameter related to bounded rank positive semidefinite matrix completions

نویسندگان

  • Monique Laurent
  • Antonios Varvitsiotis
چکیده

The Gram dimension gd(G) of a graph G is the smallest integer k ≥ 1 such that any partial real symmetric matrix, whose entries are specified on the diagonal and at the off-diagonal positions corresponding to edges of G, can be completed to a positive semidefinite matrix of rank at most k (assuming a positive semidefinite completion exists). For any fixed k the class of graphs satisfying gd(G) ≤ k is minor closed, hence it can characterized by a finite list of forbidden minors. We show that the only minimal forbidden minor is Kk+1 for k ≤ 3 and that there are two minimal forbidden minors: K5 and K2,2,2 for k = 4. We also show some close connections to Euclidean realizations of graphs and to the graph parameter ν(G) of [21]. In particular, our characterization of the graphs with gd(G) ≤ 4 implies the forbidden minor characterization of the 3-realizable graphs of Belk and Connelly [8,9] and of the graphs with ν(G) ≤ 4 of van der Holst [21].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive Semidefinite Matrix Completions on Chordal Graphs and Constraint Nondegeneracy in Semidefinite Programming

Let G = (V, E) be a graph. In matrix completion theory, it is known that the following two conditions are equivalent: (i) G is a chordal graph; (ii) Every G-partial positive semidefinite matrix has a positive semidefinite matrix completion. In this paper, we relate these two conditions to constraint nondegeneracy condition in semidefinite programming and prove that they are each equivalent to (...

متن کامل

Forbidden minor characterizations for low-rank optimal solutions to semidefinite programs over the elliptope

We study a new geometric graph parameter egd(G), defined as the smallest integer r ≥ 1 for which any partial symmetric matrix which is completable to a correlation matrix and whose entries are specified at the positions of the edges of G, can be completed to a matrix in the convex hull of correlation matrices of rank at most r. This graph parameter is motivated by its relevance to the problem o...

متن کامل

Unique low rank completability of partially filled matrices

We consider the problems of completing a low-rank positive semidefinite square matrix M or a low-rank rectangular matrix N from a given subset of their entries. We study the local and global uniqueness of such completions by analysing the structure of the graphs determined by the positions of the known entries of M or N . We show that the unique completability testing of rectangular matrices is...

متن کامل

Combinatorial Conditions for the Unique Completability of Low-Rank Matrices

We consider the problems of completing a low-rank positive semidefinite square matrix M or a low-rank rectangular matrix N from a given subset of their entries. Following the approach initiated by Singer and Cucuringu [20] we study the local and global uniqueness of such completions by analysing the structure of the graphs determined by the positions of the known entries of M or N . We present ...

متن کامل

Bounds on entanglement dimensions and quantum graph parameters via noncommutative polynomial optimization

In this paper we study bipartite quantum correlations using techniques from tracial polynomial optimization. We construct a hierarchy of semidefinite programming lower bounds on the minimal entanglement dimension of a bipartite correlation. This hierarchy converges to a new parameter: the minimal average entanglement dimension, which measures the amount of entanglement needed to reproduce a qua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 145  شماره 

صفحات  -

تاریخ انتشار 2014